5 research outputs found

    Fast integral equation methods for the Laplace-Beltrami equation on the sphere

    Full text link
    Integral equation methods for solving the Laplace-Beltrami equation on the unit sphere in the presence of multiple "islands" are presented. The surface of the sphere is first mapped to a multiply-connected region in the complex plane via a stereographic projection. After discretizing the integral equation, the resulting dense linear system is solved iteratively using the fast multipole method for the 2D Coulomb potential in order to calculate the matrix-vector products. This numerical scheme requires only O(N) operations, where NN is the number of nodes in the discretization of the boundary. The performance of the method is demonstrated on several examples

    Fast integral equation methods for the modified Helmholtz equation

    Get PDF
    We present a collection of integral equation methods for the solution to the two-dimensional, modified Helmholtz equation, u(\x) - \alpha^2 \Delta u(\x) = 0, in bounded or unbounded multiply-connected domains. We consider both Dirichlet and Neumann problems. We derive well-conditioned Fredholm integral equations of the second kind, which are discretized using high-order, hybrid Gauss-trapezoid rules. Our fast multipole-based iterative solution procedure requires only O(N) or O(NlogN)O(N\log N) operations, where N is the number of nodes in the discretization of the boundary. We demonstrate the performance of the methods on several numerical examples.Comment: Published in Computers & Mathematics with Application
    corecore